That is a completely wrong impression. After a short period since their creation, during which all commonly used features are implemented, the bugs have been ironed out, and the evaluation parameters have been tuned, further progress requires originality, and becomes very slow, typically in very small steps of 1-5 Elo. Alpha Zero was a unique revolution, using a completele different algorithm for finding moves, which up to that point had never been used, and was actually designed for playing Go. Using neural nets for evaluation in conventional engines (NNUE) was a somewhat smaller revolution, imported from Shogi, which typically causes an 80 Elo jump in strength for all engines that started to use it.
There are currently no ideas on how you could make quantum computers play chess. Quantum computers are not generally faster computers than those we have now. They are completely different beasts, being able to do some parallellizeable tasks very fast by doing them simultaneously. Using parallelism in chess has always been very problematic. I haven't exactly monitored progress in quantum computing, but I would be surprised if they could already multiply two large numbers.
By now it should be clear that the idea of using 2700+ games is a complete bust:
it measures the wrong thing. We don't want piece values for super GM's, but for use in our own games.
it does it in a very inefficient way, because of the high draw rate, and draws telling you nothing.
So even if you believe/would have proved piece values are independent of player strength, it would be very stupid to do the measurement at 2700+ level, taking 40 times as many games, each requiring 1000 times longer thinking than when you would have done it at the level you are aiming for. If you are smart you do exactly the opposit, measuring at the lowest level (= highest speed) you can afford without altering the results.
Oh, and to answer an earlier question I overlooked: I typically test for Elo-dependence of the results by playing some 800 games at each time control, varying the latter by a factor 10. 800 games gives a statistical error in the result of equivalent to some 10 Elo.
That is a completely wrong impression. After a short period since their creation, during which all commonly used features are implemented, the bugs have been ironed out, and the evaluation parameters have been tuned, further progress requires originality, and becomes very slow, typically in very small steps of 1-5 Elo. Alpha Zero was a unique revolution, using a completele different algorithm for finding moves, which up to that point had never been used, and was actually designed for playing Go. Using neural nets for evaluation in conventional engines (NNUE) was a somewhat smaller revolution, imported from Shogi, which typically causes an 80 Elo jump in strength for all engines that started to use it.
There are currently no ideas on how you could make quantum computers play chess. Quantum computers are not generally faster computers than those we have now. They are completely different beasts, being able to do some parallellizeable tasks very fast by doing them simultaneously. Using parallelism in chess has always been very problematic. I haven't exactly monitored progress in quantum computing, but I would be surprised if they could already multiply two large numbers.
By now it should be clear that the idea of using 2700+ games is a complete bust:
So even if you believe/would have proved piece values are independent of player strength, it would be very stupid to do the measurement at 2700+ level, taking 40 times as many games, each requiring 1000 times longer thinking than when you would have done it at the level you are aiming for. If you are smart you do exactly the opposit, measuring at the lowest level (= highest speed) you can afford without altering the results.
Oh, and to answer an earlier question I overlooked: I typically test for Elo-dependence of the results by playing some 800 games at each time control, varying the latter by a factor 10. 800 games gives a statistical error in the result of equivalent to some 10 Elo.