Check out Janggi (Korean Chess), our featured variant for December, 2024.


[ Help | Earliest Comments | Latest Comments ]
[ List All Subjects of Discussion | Create New Subject of Discussion ]
[ List Earliest Comments Only For Pages | Games | Rated Pages | Rated Games | Subjects of Discussion ]

Single Comment

Aberg variation of Capablanca's Chess. Different setup and castling rules. (10x8, Cells: 80) [All Comments] [Add Comment or Rating]
Reinhard Scharnagl wrote on Sat, Apr 19, 2008 12:45 PM UTC:
A short remark on piece values: first, my published model is not my last word, I still am working on that. 

As I have stated already an amount of time ago, piece values are depending from the percentage of emptyness of the board. It concerns the mobility value part of sliding pieces. This would lead to dynamic piece values of sliding pieces slowly growing through a game. SMIRF unfortunately is far away from that.

Then I modified my thoughts on the nature of a bishop pair value bonus, which in fact had not been implemented in SMIRF yet at all. Errornously I derived that value modification from the fact, that a Bishop can reach merely one half of a board. But this is only a legal but misleading view on that strange effect. Today I am relating this paradoxon to the hideability of pieces more valued than a Bishop. Thus there is a chance to positionally devalue an opposite single Bishop by moving ones big pieces preferred on squares coloured oppositely to the Bishop's one. But that view demands the value bonus not to be applied statically by summing up piece values and such a bonus, but by writing an appropriate positional detail evaluation (as I have done intuitively in SMIRF).

To try to find out piece values by having teams of different armies fighting each other seems to be very promising at a first sight. But as you see in those huge table bases: a lot of optimal play is done pure combinatorically and could end contrarily, if placing one piece only a step aside. Thus it is hard to understand why to densly relate outcomes of a games and piece values. In an extreme constellation having King+Knight against King (which is a draw anyway) such an approach would lead to the conclusion, that a Knight is valued to nothing.