Since no firstrank constant has been stored for this game, one will be calculated by analyzing the moves in the game. This will work only if the game lasted long enough to put enough pieces into play.

mv is P e2-e4, p is P, o is e2

space e2 is P

0 P P e2-e4 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

mv is p b7-b6, p is p, o is b7

space b7 is p

1 p p b7-b6 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

mv is P b2-b3, p is P, o is b2

space b2 is P

2 P P b2-b3 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

mv is p d7-d5, p is p, o is d7

space d7 is p

3 p p d7-d5 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

mv is B d1-f3, p is B, o is d1

space d1 is d1

4 d1 B d1-f3 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

5 one bits in var d1

11011 111101 111011 100 111011 111101 111011 11101

q end B d1-f3 27 61 59 4 59 61 59 29

bb end B d1-f3 27 61 59 4 59 61 59 29

bw end B d1-f3 27 57 59 4 59 57 59 25

firstr is a1, and lastr is h1

r B d1-f3 27 57 59 4 59 57 59 25

first 27 57 59 4 59 57 59 25

11011 111001 111011 100 111011 111001 111011 11001

q end B d1-f3 27 57 59 4 59 57 59 25

bb end B d1-f3 27 57 59 4 59 57 59 25

bw end B d1-f3 27 57 59 4 59 57 59 25

firstr is a1, and lastr is h1

r B d1-f3 27 57 59 4 59 57 59 25

first 27 57 59 4 59 57 59 25

mv is p d5-e4, p is p, o is d5

space d5 is p

5 p p d5-e4 27 57 59 4 59 57 59 25

11011 111001 111011 100 111011 111001 111011 11001

mv is B f3-e4, p is B, o is f3

space f3 is d1

6 d1 B f3-e4 27 57 59 4 59 57 59 25

11011 111001 111011 100 111011 111001 111011 11001

1 one bits in var d1

11011 111001 111011 100 111011 111001 111011 11001

q end B f3-e4 27 57 59 4 59 57 59 25

bb end B f3-e4 27 57 59 4 59 57 59 25

bw end B f3-e4 27 57 59 4 59 57 59 25

firstr is a1, and lastr is h1

r B f3-e4 27 57 59 4 59 57 59 25

first 27 57 59 4 59 57 59 25

mv is b a8-e4, p is b, o is a8

space a8 is a1

7 a1 b a8-e4 27 57 59 4 59 57 59 25

11011 111001 111011 100 111011 111001 111011 11001

4 one bits in var a1

10 111001 111011 100 111011 111001 111011 11001

q end b a8-e4 2 57 59 4 59 57 59 25

bb end b a8-e4 2 57 57 4 57 57 57 25

bw end b a8-e4 2 57 57 4 57 57 57 25

firstr is b1, and lastr is h1

r b a8-e4 2 25 57 4 57 57 57 25

first 2 25 57 4 57 57 57 25

10 11001 111001 100 111001 111001 111001 11001

q end b a8-e4 2 25 57 4 57 57 57 25

bb end b a8-e4 2 25 57 4 57 57 57 25

bw end b a8-e4 2 25 57 4 57 57 57 25

firstr is b1, and lastr is h1

r b a8-e4 2 25 57 4 57 57 57 25

first 2 25 57 4 57 57 57 25

mv is R e1-e4, p is R, o is e1

space e1 is e1

8 e1 R e1-e4 2 25 57 4 57 57 57 25

10 11001 111001 100 111001 111001 111001 11001

4 one bits in var e1

10 11001 111001 100 1000 111001 111001 11001

q end R e1-e4 2 25 57 4 8 57 57 25

bb end R e1-e4 2 25 57 4 8 57 57 25

bw end R e1-e4 2 25 57 4 8 57 57 25

firstr is b1, and lastr is h1

One Rook found

f1 57

r R e1-e4 2 25 49 4 8 49 57 25

first 2 25 49 4 8 49 57 25

10 11001 110001 100 1000 110001 111001 11001

q end R e1-e4 2 25 49 4 8 49 57 25

bb end R e1-e4 2 25 49 4 8 49 57 25

bw end R e1-e4 2 25 49 4 8 49 57 25

firstr is b1, and lastr is h1

One Rook found

f1 49

r R e1-e4 2 25 49 4 8 49 57 25

first 2 25 49 4 8 49 57 25

mv is p f7-f5, p is p, o is f7

space f7 is p

9 p p f7-f5 2 25 49 4 8 49 57 25

10 11001 110001 100 1000 110001 111001 11001

mv is R e4-e1, p is R, o is e4

space e4 is e1

10 e1 R e4-e1 2 25 49 4 8 49 57 25

10 11001 110001 100 1000 110001 111001 11001

1 one bits in var e1

10 11001 110001 100 1000 110001 111001 11001

q end R e4-e1 2 25 49 4 8 49 57 25

bb end R e4-e1 2 25 49 4 8 49 57 25

bw end R e4-e1 2 25 49 4 8 49 57 25

firstr is b1, and lastr is h1

One Rook found

f1 49

r R e4-e1 2 25 49 4 8 49 57 25

first 2 25 49 4 8 49 57 25

mv is n f8-g6, p is n, o is f8

space f8 is f1

11 f1 n f8-g6 2 25 49 4 8 49 57 25

10 11001 110001 100 1000 110001 111001 11001

3 one bits in var f1

10 11001 110001 100 1000 1 111001 11001

q end n f8-g6 2 25 49 4 8 1 57 25

bb end n f8-g6 2 25 49 4 8 1 57 25

bw end n f8-g6 2 25 49 4 8 1 57 25

firstr is b1, and lastr is h1

One Rook found

f1 1

g1 57

r n f8-g6 2 25 49 4 8 1 49 25

first 2 25 49 4 8 1 49 25

10 11001 110001 100 1000 1 110001 11001

q end n f8-g6 2 25 49 4 8 1 49 25

bb end n f8-g6 2 25 49 4 8 1 49 25

bw end n f8-g6 2 25 49 4 8 1 49 25

firstr is b1, and lastr is h1

One Rook found

f1 1

g1 49

r n f8-g6 2 25 49 4 8 1 49 25

first 2 25 49 4 8 1 49 25

mv is N f1-g3, p is N, o is f1

space f1 is f1

12 f1 N f1-g3 2 25 49 4 8 1 49 25

10 11001 110001 100 1000 1 110001 11001

1 one bits in var f1

10 11001 110001 100 1000 1 110001 11001

q end N f1-g3 2 25 49 4 8 1 49 25

bb end N f1-g3 2 25 49 4 8 1 49 25

bw end N f1-g3 2 25 49 4 8 1 49 25

firstr is b1, and lastr is h1

One Rook found

f1 1

g1 49

r N f1-g3 2 25 49 4 8 1 49 25

first 2 25 49 4 8 1 49 25

mv is p e7-e6, p is p, o is e7

space e7 is p

13 p p e7-e6 2 25 49 4 8 1 49 25

10 11001 110001 100 1000 1 110001 11001

mv is P d2-d3, p is P, o is d2

space d2 is P

14 P P d2-d3 2 25 49 4 8 1 49 25

10 11001 110001 100 1000 1 110001 11001

mv is r h8-f8, p is r, o is h8

space h8 is h1

15 h1 r h8-f8 2 25 49 4 8 1 49 25

10 11001 110001 100 1000 1 110001 11001

3 one bits in var h1

10 11001 110001 100 1000 1 110001 1000

q end r h8-f8 2 25 49 4 8 1 49 8

bb end r h8-f8 2 25 49 4 8 1 49 8

bw end r h8-f8 2 25 49 4 8 1 49 8

firstr is b1, and lastr is h1

Two rooks found.

r r h8-f8 2 17 49 4 8 1 49 8

first 2 17 49 4 8 1 49 8

10 10001 110001 100 1000 1 110001 1000

q end r h8-f8 2 17 49 4 8 1 49 8

bb end r h8-f8 2 17 49 4 8 1 49 8

bw end r h8-f8 2 17 49 4 8 1 49 8

first 2 17 49 4 8 1 32 8

10 10001 110001 100 1000 1 100000 1000

q end r h8-f8 2 17 17 4 8 1 32 8

bb end r h8-f8 2 17 17 4 8 1 32 8

bw end r h8-f8 2 17 17 4 8 1 32 8

first 2 17 17 4 8 1 32 8

10 10001 10001 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end r h8-f8 2 17 17 4 8 1 32 8

bb end r h8-f8 2 17 17 4 8 1 32 8

bw end r h8-f8 2 17 17 4 8 1 32 8

first 2 17 17 4 8 1 32 8

mv is N b1-d2, p is N, o is b1

space b1 is b1

16 b1 N b1-d2 2 17 17 4 8 1 32 8

10 10001 10001 100 1000 1 100000 1000

2 one bits in var b1

10 1 10001 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end N b1-d2 2 1 16 4 8 1 32 8

bb end N b1-d2 2 1 16 4 8 1 32 8

bw end N b1-d2 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end N b1-d2 2 1 16 4 8 1 32 8

bb end N b1-d2 2 1 16 4 8 1 32 8

bw end N b1-d2 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is b d8-g5, p is b, o is d8

space d8 is d1

17 d1 b d8-g5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var d1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end b d8-g5 2 1 16 4 8 1 32 8

bb end b d8-g5 2 1 16 4 8 1 32 8

bw end b d8-g5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is Q c1-d1, p is Q, o is c1

space c1 is c1

18 c1 Q c1-d1 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var c1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end Q c1-d1 2 1 16 4 8 1 32 8

bb end Q c1-d1 2 1 16 4 8 1 32 8

bw end Q c1-d1 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is n b8-c6, p is n, o is b8

space b8 is b1

19 b1 n b8-c6 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var b1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end n b8-c6 2 1 16 4 8 1 32 8

bb end n b8-c6 2 1 16 4 8 1 32 8

bw end n b8-c6 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is N d2-f3, p is N, o is d2

space d2 is b1

20 b1 N d2-f3 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var b1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end N d2-f3 2 1 16 4 8 1 32 8

bb end N d2-f3 2 1 16 4 8 1 32 8

bw end N d2-f3 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is b g5-h6, p is b, o is g5

space g5 is d1

21 d1 b g5-h6 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var d1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end b g5-h6 2 1 16 4 8 1 32 8

bb end b g5-h6 2 1 16 4 8 1 32 8

bw end b g5-h6 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is B a1-c3, p is B, o is a1

space a1 is a1

22 a1 B a1-c3 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var a1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end B a1-c3 2 1 16 4 8 1 32 8

bb end B a1-c3 2 1 16 4 8 1 32 8

bw end B a1-c3 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is q c8-d8, p is q, o is c8

space c8 is c1

23 c1 q c8-d8 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var c1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end q c8-d8 2 1 16 4 8 1 32 8

bb end q c8-d8 2 1 16 4 8 1 32 8

bw end q c8-d8 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is B c3-d2, p is B, o is c3

space c3 is a1

24 a1 B c3-d2 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var a1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end B c3-d2 2 1 16 4 8 1 32 8

bb end B c3-d2 2 1 16 4 8 1 32 8

bw end B c3-d2 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is p f5-f4, p is p, o is f5

space f5 is p

25 p p f5-f4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is N g3-e4, p is N, o is g3

space g3 is f1

26 f1 N g3-e4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var f1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end N g3-e4 2 1 16 4 8 1 32 8

bb end N g3-e4 2 1 16 4 8 1 32 8

bw end N g3-e4 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is p e6-e5, p is p, o is e6

space e6 is p

27 p p e6-e5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is B d2-c3, p is B, o is d2

space d2 is a1

28 a1 B d2-c3 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var a1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end B d2-c3 2 1 16 4 8 1 32 8

bb end B d2-c3 2 1 16 4 8 1 32 8

bw end B d2-c3 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is n c6-d4, p is n, o is c6

space c6 is b1

29 b1 n c6-d4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var b1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end n c6-d4 2 1 16 4 8 1 32 8

bb end n c6-d4 2 1 16 4 8 1 32 8

bw end n c6-d4 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is B c3-d4, p is B, o is c3

space c3 is a1

30 a1 B c3-d4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var a1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end B c3-d4 2 1 16 4 8 1 32 8

bb end B c3-d4 2 1 16 4 8 1 32 8

bw end B c3-d4 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is p e5-d4, p is p, o is e5

space e5 is p

31 p p e5-d4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is P b3-b4, p is P, o is b3

space b3 is P

32 P P b3-b4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is q d8-d5, p is q, o is d8

space d8 is c1

33 c1 q d8-d5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var c1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end q d8-d5 2 1 16 4 8 1 32 8

bb end q d8-d5 2 1 16 4 8 1 32 8

bw end q d8-d5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is R h1-f1, p is R, o is h1

space h1 is h1

34 h1 R h1-f1 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var h1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end R h1-f1 2 1 16 4 8 1 32 8

bb end R h1-f1 2 1 16 4 8 1 32 8

bw end R h1-f1 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is n g6-e5, p is n, o is g6

space g6 is f1

35 f1 n g6-e5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var f1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end n g6-e5 2 1 16 4 8 1 32 8

bb end n g6-e5 2 1 16 4 8 1 32 8

bw end n g6-e5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is N f3-e5, p is N, o is f3

space f3 is b1

36 b1 N f3-e5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var b1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end N f3-e5 2 1 16 4 8 1 32 8

bb end N f3-e5 2 1 16 4 8 1 32 8

bw end N f3-e5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is r e8-e5, p is r, o is e8

space e8 is e1

37 e1 r e8-e5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var e1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end r e8-e5 2 1 16 4 8 1 32 8

bb end r e8-e5 2 1 16 4 8 1 32 8

bw end r e8-e5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is P c2-c4, p is P, o is c2

space c2 is P

38 P P c2-c4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is q d5-d7, p is q, o is d5

space d5 is c1

39 c1 q d5-d7 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var c1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end q d5-d7 2 1 16 4 8 1 32 8

bb end q d5-d7 2 1 16 4 8 1 32 8

bw end q d5-d7 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is N e4-d2, p is N, o is e4

space e4 is f1

40 f1 N e4-d2 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var f1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end N e4-d2 2 1 16 4 8 1 32 8

bb end N e4-d2 2 1 16 4 8 1 32 8

bw end N e4-d2 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is r e5-f5, p is r, o is e5

space e5 is e1

41 e1 r e5-f5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var e1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end r e5-f5 2 1 16 4 8 1 32 8

bb end r e5-f5 2 1 16 4 8 1 32 8

bw end r e5-f5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is P f2-f3, p is P, o is f2

space f2 is P

42 P P f2-f3 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is b h6-g5, p is b, o is h6

space h6 is d1

43 d1 b h6-g5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var d1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end b h6-g5 2 1 16 4 8 1 32 8

bb end b h6-g5 2 1 16 4 8 1 32 8

bw end b h6-g5 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

mv is P b4-b5, p is P, o is b4

space b4 is P

44 P P b4-b5 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

mv is b g5-h4, p is b, o is g5

space g5 is d1

45 d1 b g5-h4 2 1 16 4 8 1 32 8

10 1 10000 100 1000 1 100000 1000

1 one bits in var d1

10 1 10000 100 1000 1 100000 1000

g1

Array
(
    [0] => a1
    [1] => b1
    [2] => c1
    [3] => d1
    [4] => e1
    [5] => f1
)

q end b g5-h4 2 1 16 4 8 1 32 8

bb end b g5-h4 2 1 16 4 8 1 32 8

bw end b g5-h4 2 1 16 4 8 1 32 8

first 2 1 16 4 8 1 32 8

Continue because mv is empty

firstrank is BNQBRNKR

Castling with Rook! h1 f1 e1 d1 h1 f1






Check out Atomic Chess, our featured variant for November, 2024.

Viewing Game

Q R R K P N P P P P P p p b P r p p p q p p r k

Fischer Random Chess

White:
Black:



Orientation:
Scale:

Render as:
Shape:

Piece Set:

Background:

a Fischer Random Chess problem from this position.

Rules of Fischer Random Chess

K
King
Q
Queen
R
Rook
B
Bishop
N
Knight
P
Pawn

Fischer Random Chess is played just like Chess except as follows:

Notation

You should be aware that Game Courier's notation is not identical with standard Chess notation. Game Courier has been designed for general use with any of several different Chess variants, and it accordingly uses a generic system of notation. This system is described in detail in the User's Guide. Here are the basics you need to know for Chess. Move a piece by writing its present coordinate, a hyphen, and its destination coordinate. For example, "e2-e4". There is no special operator for captures. A hyphen should be used even when a piece is captured. To signal to your opponent what piece you moved, and to provide an extra bit of error checking on the move you enter, you may include Game Courier's notation for the piece before the move. For example, "P e2-e4". Note that Game Courier uses uppercase letters for White pieces and lowercase for Black pieces. Black could enter "p e7-e5" for a move but not "P e7-e5".

This preset enforces the rules. It also automates en passant and castling. To capture by en passant, just move your Pawn to its destination. If it is a legal en passant move, your opponent's Pawn will be automatically captured.

To castle, move either your King or your Rook, but not both, to where it must go to castle. This move should be an otherwise illegal move. Either the King should move two or more spaces, or the King or Rook should hop over or capture the other. If you move your King only one space or move your Rook only across empty spaces, then your move will not count as castling. Once you have made half the castling move, the other piece will automatically move into place.

All promotions must be done explicitly. After moving your Pawn to the last rank, tack a semicolon to your Pawn move and add the new piece to the Pawn's space. For example, "P f7-f8; Q-f8".

How to Move Pieces

Full Algebraic Notation

Algebraic notation identifies each space by a coordinate that begins with its file label and ends with its rank label. On the Chess board, files go up and down from one player to the other, and ranks go from left to right. In most games, files are represented by letters, and ranks are represented by numbers, but there is no fixed rule requiring this for all games, and some games, such as Shogi, reverse this convention. If you look at the diagram, you will usually see the file labels going from left to right and the file labels going up and down. And if you hover your mouse over a space, you will normally see the name of the coordinate appear in a tooltip.

It is not uncommon to see algebraic notation being used for Chess, but it is often in an abbreviated format that requires you to know both the rules of the game and the current position to know exactly which piece moves where. For example, the notation "Ne6" indicates that a Knight is moving to e6, but it doesn't indicate which Knight, and it doesn't specify where the Knight is coming from. To figure this out, you need to know how a Knight moves and which Knight on the board can make a legal move to e6.

Although rules may be programmed for individual games, Game Courier itself does not know the rules of any game, and it is unable to parse abbreviated algebraic notation. Therefore, it relies on full algebraic notation, which completely specifies the move without requiring any knowledge of the game's rules or the current position. The most usual type of full algebraic notation indicates the piece that is moving by its label, the space it is moving from, and the space it moving to. In Chess, a typical first move might be written as "P e2-e4". When you hover your mouse over a piece, you will normally see the piece label followed by the coordinate for the space, and when you hover it over an empty space, you will normally see the coordinate label. Including the piece label in your notation allows Game Courier to check that the piece you're moving is the right one, and it makes game notation easier to follow, but it is not mandatory.

You may promote a piece by including a promotion move after your regular move. A promotion move has a piece go directly to a coordinate. Here is an example: "p e7-e8; q-e8".

You may remove a piece from a space by adding an @ to the space or by omitting the destination coordinate. For example, both "@-e4" and "e4-" would remove the piece on "e4". This is useful for en passant when you are playing a game that does not handle this automatically. For example, "P d5-e6; e5-" removes the Pawn on e5 after a Pawn moves from d5 to e6.

You will not need to remove spaces for most games, but if you should need to, you can do this by omitting the first coordinate in a move. For example, "-e4" would remove e4 from the board. To add or return a space to the board, you may add an @ or any other piece to it.

Available Pieces

Pieces are represented by labels, usually using uppercase letters for White and lowercase letter for Black. When you enter a move or specify the starting position for a game, you should remember that piece labels are case-sensitive. Many piece sets are available for use with Game Courier, and this table shows you which pieces belong to the piece set you are currently using.

The inclusion of a piece does not indicate that it is used in the game you are playing. But if your game uses pieces not included here, you should choose a different piece set.

wcardinal.png
A
wbishop.png
B
wcannon.png
C
wbishopinv.png
D
wequesrex.png
E
wknightinv.png
F
wcardinalinv.png
G
whorse.png
H
wnightrider.png
I
wchancellorinv.png
J
wking.png
K
wpawninv.png
L
wchancellor.png
M
wknight.png
N
wqueeninv.png
O
wpawn.png
P
wqueen.png
Q
wrook.png
R
wrookinv.png
S
wamazon.png
T
wkinginv.png
U
wequesrex.png
X
bcardinal.png
a
bbishop.png
b
bcannon.png
c
bbishopinv.png
d
bequesrex.png
e
bknightinv.png
f
bcardinalinv.png
g
bhorse.png
h
bnightrider.png
i
bchancellorinv.png
j
bking.png
k
bpawninv.png
l
bchancellor.png
m
bknight.png
n
bqueeninv.png
o
bpawn.png
p
bqueen.png
q
brook.png
r
brookinv.png
s
bamazon.png
t
bkinginv.png
u
bequesrex.png
x

Credits

This preset uses the Abstract settings file for Fischer Random Chess, which was made by Fergus Duniho.

Game Courier was created, programmed and written by Fergus Duniho.

Game Courier, Copyright © Fergus Duniho, 2001-2017


WWW Page Created: 15 August 2001

Kibbitzing Etiquette

Kibbitzing is the practice of commenting on a game you are not playing. In commenting on a game, please follow these rules of etiquette.

(1) If you notice that someone has made an illegal move, please mention it. Some Game Courier presets cannot enforce rules, but Game Courier does enable players to take back any previous move. Details on how to take back a move are provided in the User's Guide, linked to above the board.

(2) Unless otherwise specifically asked to, do not offer hints or suggestions to players on what moves they should make. In general, avoid coaching comments.

(3) Once a game is over, it should be alright to offer your analysis of the game and your specific comments on what moves players should have made. If some players don't want this, they may mention it in the Kibbitzing section, and you should honor this request by not commenting on the game.

(4) Be polite. At the appropriate time, offer any criticism you have in a constructive manner. Avoid heckling players for bad moves.

(5) Don't spam this space with irrelevant comments. If you have a comment about Game Courier, rather than about the specific game you're viewing, please post it on Game Courier's Index page to give it.