Since no firstrank constant has been stored for this game, one will be calculated by analyzing the moves in the game. This will work only if the game lasted long enough to put enough pieces into play.

mv is a2-a3, p is #p, o is a2

space a2 is P

0 P a2-a3 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

mv is a7-a6, p is #p, o is a7

space a7 is p

1 p a7-a6 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

mv is b1-a2, p is #p, o is b1

space b1 is b1

2 b1 b1-a2 27 61 59 61 59 61 59 29

11011 111101 111011 111101 111011 111101 111011 11101

5 one bits in var b1

11011 110100 111011 111101 111011 111101 111011 11101

q end b1-a2 27 52 59 61 59 61 59 29

bb end b1-a2 27 52 59 61 59 61 59 29

bw end b1-a2 27 52 59 61 59 61 59 29

firstr is a1, and lastr is h1

r b1-a2 27 52 59 61 59 61 59 29

first 27 52 59 61 59 61 59 29

mv is b8-a7, p is #p, o is b8

space b8 is b1

3 b1 b8-a7 27 52 59 61 59 61 59 29

11011 110100 111011 111101 111011 111101 111011 11101

3 one bits in var b1

11011 110100 111011 111101 111011 111101 111011 11101

q end b8-a7 27 52 59 61 59 61 59 29

bb end b8-a7 27 52 59 61 59 61 59 29

bw end b8-a7 27 52 59 61 59 61 59 29

firstr is a1, and lastr is h1

r b8-a7 27 52 59 61 59 61 59 29

first 27 52 59 61 59 61 59 29

mv is e2-e3, p is #p, o is e2

space e2 is P

4 P e2-e3 27 52 59 61 59 61 59 29

11011 110100 111011 111101 111011 111101 111011 11101

mv is d7-d6, p is #p, o is d7

space d7 is p

5 p d7-d6 27 52 59 61 59 61 59 29

11011 110100 111011 111101 111011 111101 111011 11101

mv is d2-d4, p is #p, o is d2

space d2 is P

6 P d2-d4 27 52 59 61 59 61 59 29

11011 110100 111011 111101 111011 111101 111011 11101

mv is e7-e6, p is #p, o is e7

space e7 is p

7 p e7-e6 27 52 59 61 59 61 59 29

11011 110100 111011 111101 111011 111101 111011 11101

mv is e1-c3, p is #p, o is e1

space e1 is e1

8 e1 e1-c3 27 52 59 61 59 61 59 29

11011 110100 111011 111101 111011 111101 111011 11101

5 one bits in var e1

11011 110100 111011 111101 10010 111101 111011 11101

q end e1-c3 27 52 59 61 18 61 59 29

bb end e1-c3 27 52 59 61 18 61 59 29

bw end e1-c3 27 52 59 61 18 61 59 29

firstr is a1, and lastr is h1

r e1-c3 27 52 59 61 18 61 59 29

first 27 52 59 61 18 61 59 29

mv is d8-d7, p is #p, o is d8

space d8 is d1

9 d1 d8-d7 27 52 59 61 18 61 59 29

11011 110100 111011 111101 10010 111101 111011 11101

5 one bits in var d1

11011 110100 111011 111000 10010 111101 111011 11101

q end d8-d7 27 52 59 56 18 61 59 29

bb end d8-d7 27 52 59 56 18 61 59 29

bw end d8-d7 27 52 59 56 18 61 59 29

firstr is a1, and lastr is h1

r d8-d7 27 52 59 56 18 61 59 29

first 27 52 59 56 18 61 59 29

mv is d1-d2, p is #p, o is d1

space d1 is d1

10 d1 d1-d2 27 52 59 56 18 61 59 29

11011 110100 111011 111000 10010 111101 111011 11101

3 one bits in var d1

11011 110100 111011 111000 10010 111101 111011 11101

q end d1-d2 27 52 59 56 18 61 59 29

bb end d1-d2 27 52 59 56 18 61 59 29

bw end d1-d2 27 52 59 56 18 61 59 29

firstr is a1, and lastr is h1

r d1-d2 27 52 59 56 18 61 59 29

first 27 52 59 56 18 61 59 29

mv is a8-d8, p is #p, o is a8

space a8 is a1

11 a1 a8-d8 27 52 59 56 18 61 59 29

11011 110100 111011 111000 10010 111101 111011 11101

4 one bits in var a1

rook hopping king to castle

11011 110100 111011 111000 10010 111101 111011 11101

q end a8-d8 27 52 59 56 18 61 59 29

bb end a8-d8 27 52 59 56 18 61 59 29

bw end a8-d8 27 52 59 56 18 61 59 29

firstr is a1, and lastr is h1

r a8-d8 27 52 59 56 18 61 59 29

first 27 52 59 56 18 61 59 29

mv is a1-d1, p is #p, o is a1

space a1 is a1

12 a1 a1-d1 27 52 59 56 18 61 59 29

11011 110100 111011 111000 10010 111101 111011 11101

4 one bits in var a1

rook hopping king to castle

11011 110100 111011 111000 10010 111101 111011 11101

q end a1-d1 27 52 59 56 18 61 59 29

bb end a1-d1 27 52 59 56 18 61 59 29

bw end a1-d1 27 52 59 56 18 61 59 29

firstr is a1, and lastr is h1

r a1-d1 27 52 59 56 18 61 59 29

first 27 52 59 56 18 61 59 29

mv is g7-g5, p is #p, o is g7

space g7 is p

13 p g7-g5 27 52 59 56 18 61 59 29

11011 110100 111011 111000 10010 111101 111011 11101

mv is h1-g3, p is #p, o is h1

space h1 is h1

14 h1 h1-g3 27 52 59 56 18 61 59 29

11011 110100 111011 111000 10010 111101 111011 11101

4 one bits in var h1

11011 110100 111011 111000 10010 111101 111011 1

q end h1-g3 27 52 59 56 18 61 59 1

bb end h1-g3 27 52 59 56 18 61 59 1

bw end h1-g3 27 52 59 56 18 61 59 1

firstr is a1, and lastr is g1

r h1-g3 27 52 59 56 18 61 27 1

first 27 52 59 56 18 61 27 1

11011 110100 111011 111000 10010 111101 11011 1

q end h1-g3 27 52 59 56 18 61 27 1

bb end h1-g3 27 52 59 56 18 61 27 1

bw end h1-g3 27 52 59 56 18 61 27 1

firstr is a1, and lastr is g1

r h1-g3 27 52 59 56 18 61 27 1

first 27 52 59 56 18 61 27 1

mv is h8-g6, p is #p, o is h8

space h8 is h1

15 h1 h8-g6 27 52 59 56 18 61 27 1

11011 110100 111011 111000 10010 111101 11011 1

1 one bits in var h1

11011 110100 111011 111000 10010 111101 11011 1

q end h8-g6 27 52 59 56 18 61 27 1

bb end h8-g6 27 52 59 56 18 61 27 1

bw end h8-g6 27 52 59 56 18 61 27 1

firstr is a1, and lastr is g1

r h8-g6 27 52 59 56 18 61 27 1

first 27 52 59 56 18 61 27 1

mv is g3-e2, p is #p, o is g3

space g3 is h1

16 h1 g3-e2 27 52 59 56 18 61 27 1

11011 110100 111011 111000 10010 111101 11011 1

1 one bits in var h1

11011 110100 111011 111000 10010 111101 11011 1

q end g3-e2 27 52 59 56 18 61 27 1

bb end g3-e2 27 52 59 56 18 61 27 1

bw end g3-e2 27 52 59 56 18 61 27 1

firstr is a1, and lastr is g1

r g3-e2 27 52 59 56 18 61 27 1

first 27 52 59 56 18 61 27 1

mv is h7-h5, p is #p, o is h7

space h7 is p

17 p h7-h5 27 52 59 56 18 61 27 1

11011 110100 111011 111000 10010 111101 11011 1

mv is f1-g3, p is #p, o is f1

space f1 is f1

18 f1 f1-g3 27 52 59 56 18 61 27 1

11011 110100 111011 111000 10010 111101 11011 1

5 one bits in var f1

11011 110100 111011 111000 10010 1 11011 1

q end f1-g3 27 52 59 56 18 1 27 1

bb end f1-g3 27 52 59 56 18 1 27 1

bw end f1-g3 27 4 59 56 18 1 27 1

firstr is a1, and lastr is g1

r f1-g3 27 4 59 56 18 1 27 1

first 27 4 59 56 18 1 27 1

11010 100 111010 111000 10010 1 11010 1

q end f1-g3 26 4 58 56 18 1 26 1

bb end f1-g3 26 4 58 56 18 1 26 1

bw end f1-g3 26 4 58 56 18 1 26 1

firstr is a1, and lastr is g1

r f1-g3 26 4 58 56 18 1 26 1

first 26 4 58 56 18 1 26 1

mv is g8-h7, p is #p, o is g8

space g8 is g1

19 g1 g8-h7 26 4 58 56 18 1 26 1

11010 100 111010 111000 10010 1 11010 1

3 one bits in var g1

11010 100 111010 111000 10010 1 10010 1

q end g8-h7 26 4 58 56 18 1 18 1

bb end g8-h7 26 4 58 56 18 1 18 1

bw end g8-h7 26 4 58 56 18 1 18 1

firstr is a1, and lastr is d1

One Rook found

e1 18

f1 1

g1 18

h1 1

r g8-h7 26 4 50 8 18 1 18 1

first 26 4 50 8 18 1 18 1

11010 100 110010 1000 10010 1 10010 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end g8-h7 8 4 32 8 18 1 18 1

bb end g8-h7 8 4 32 8 18 1 18 1

bw end g8-h7 8 4 32 8 18 1 18 1

first 8 4 32 8 18 1 18 1

1000 100 100000 1000 10010 1 10010 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end g8-h7 8 4 32 8 18 1 18 1

bb end g8-h7 8 4 32 8 18 1 18 1

bw end g8-h7 8 4 32 8 18 1 18 1

first 8 4 32 8 18 1 18 1

mv is f2-f3, p is #p, o is f2

space f2 is P

20 P f2-f3 8 4 32 8 18 1 18 1

1000 100 100000 1000 10010 1 10010 1

mv is f7-f5, p is #p, o is f7

space f7 is p

21 p f7-f5 8 4 32 8 18 1 18 1

1000 100 100000 1000 10010 1 10010 1

mv is g1-e1, p is #p, o is g1

space g1 is g1

22 g1 g1-e1 8 4 32 8 18 1 18 1

1000 100 100000 1000 10010 1 10010 1

2 one bits in var g1

rook ride

Rook or Queen move

1000 100 100000 1000 10010 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

queen before g1-e1 8 4 32 8 18 1 16 1

queen after g1-e1 8 4 32 8 2 1 16 1

q end g1-e1 8 4 32 8 2 1 16 1

bb end g1-e1 8 4 32 8 2 1 16 1

bw end g1-e1 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end g1-e1 8 4 32 8 2 1 16 1

bb end g1-e1 8 4 32 8 2 1 16 1

bw end g1-e1 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is f5-f4, p is #p, o is f5

space f5 is p

23 p f5-f4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

mv is e3-f4, p is #p, o is e3

space e3 is P

24 P e3-f4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

mv is g6-f4, p is #p, o is g6

space g6 is h1

25 h1 g6-f4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var h1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end g6-f4 8 4 32 8 2 1 16 1

bb end g6-f4 8 4 32 8 2 1 16 1

bw end g6-f4 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is e2-f4, p is #p, o is e2

space e2 is h1

26 h1 e2-f4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var h1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end e2-f4 8 4 32 8 2 1 16 1

bb end e2-f4 8 4 32 8 2 1 16 1

bw end e2-f4 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is g5-f4, p is #p, o is g5

space g5 is p

27 p g5-f4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

mv is g3-e2, p is #p, o is g3

space g3 is f1

28 f1 g3-e2 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end g3-e2 8 4 32 8 2 1 16 1

bb end g3-e2 8 4 32 8 2 1 16 1

bw end g3-e2 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is h7-f5, p is #p, o is h7

space h7 is g1

29 g1 h7-f5 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var g1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end h7-f5 8 4 32 8 2 1 16 1

bb end h7-f5 8 4 32 8 2 1 16 1

bw end h7-f5 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is e2-g1, p is #p, o is e2

space e2 is f1

30 f1 e2-g1 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end e2-g1 8 4 32 8 2 1 16 1

bb end e2-g1 8 4 32 8 2 1 16 1

bw end e2-g1 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is e6-e5, p is #p, o is e6

space e6 is p

31 p e6-e5 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

mv is d4-e5, p is #p, o is d4

space d4 is P

32 P d4-e5 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

mv is d6-e5, p is #p, o is d6

space d6 is p

33 p d6-e5 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

mv is d2-d7, p is #p, o is d2

space d2 is d1

34 d1 d2-d7 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var d1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end d2-d7 8 4 32 8 2 1 16 1

bb end d2-d7 8 4 32 8 2 1 16 1

bw end d2-d7 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is d8-d7, p is #p, o is d8

space d8 is a1

35 a1 d8-d7 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var a1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end d8-d7 8 4 32 8 2 1 16 1

bb end d8-d7 8 4 32 8 2 1 16 1

bw end d8-d7 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is d1-d7, p is #p, o is d1

space d1 is a1

36 a1 d1-d7 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var a1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end d1-d7 8 4 32 8 2 1 16 1

bb end d1-d7 8 4 32 8 2 1 16 1

bw end d1-d7 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is e8-d7, p is #p, o is e8

space e8 is e1

37 e1 e8-d7 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var e1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end e8-d7 8 4 32 8 2 1 16 1

bb end e8-d7 8 4 32 8 2 1 16 1

bw end e8-d7 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is g1-h3, p is #p, o is g1

space g1 is f1

38 f1 g1-h3 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end g1-h3 8 4 32 8 2 1 16 1

bb end g1-h3 8 4 32 8 2 1 16 1

bw end g1-h3 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is a7-e3, p is #p, o is a7

space a7 is b1

39 b1 a7-e3 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var b1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end a7-e3 8 4 32 8 2 1 16 1

bb end a7-e3 8 4 32 8 2 1 16 1

bw end a7-e3 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is c1-b1, p is #p, o is c1

space c1 is c1

40 c1 c1-b1 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var c1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end c1-b1 8 4 32 8 2 1 16 1

bb end c1-b1 8 4 32 8 2 1 16 1

bw end c1-b1 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is d7-e6, p is #p, o is d7

space d7 is e1

41 e1 d7-e6 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var e1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end d7-e6 8 4 32 8 2 1 16 1

bb end d7-e6 8 4 32 8 2 1 16 1

bw end d7-e6 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is a2-e6, p is #p, o is a2

space a2 is b1

42 b1 a2-e6 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var b1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end a2-e6 8 4 32 8 2 1 16 1

bb end a2-e6 8 4 32 8 2 1 16 1

bw end a2-e6 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is f8-e6, p is #p, o is f8

space f8 is f1

43 f1 f8-e6 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end f8-e6 8 4 32 8 2 1 16 1

bb end f8-e6 8 4 32 8 2 1 16 1

bw end f8-e6 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is h3-f2, p is #p, o is h3

space h3 is f1

44 f1 h3-f2 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end h3-f2 8 4 32 8 2 1 16 1

bb end h3-f2 8 4 32 8 2 1 16 1

bw end h3-f2 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is e6-d4, p is #p, o is e6

space e6 is f1

45 f1 e6-d4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end e6-d4 8 4 32 8 2 1 16 1

bb end e6-d4 8 4 32 8 2 1 16 1

bw end e6-d4 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is f2-e4, p is #p, o is f2

space f2 is f1

46 f1 f2-e4 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end f2-e4 8 4 32 8 2 1 16 1

bb end f2-e4 8 4 32 8 2 1 16 1

bw end f2-e4 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is d4-b5, p is #p, o is d4

space d4 is f1

47 f1 d4-b5 8 4 32 8 2 1 16 1

1000 100 100000 1000 10 1 10000 1

1 one bits in var f1

1000 100 100000 1000 10 1 10000 1

c1

Array
(
    [0] => a1
    [1] => b1
)

q end d4-b5 8 4 32 8 2 1 16 1

bb end d4-b5 8 4 32 8 2 1 16 1

bw end d4-b5 8 4 32 8 2 1 16 1

first 8 4 32 8 2 1 16 1

mv is drawn, p is #p, o is drawn

Continue because drawn is drawn

Continue because mv is empty

firstrank is RBKRBNQN

Castling with Rook! a1 d1 a1 d1 d1 f1






Check out Atomic Chess, our featured variant for November, 2024.

Viewing Game

The game is declared drawn.

1 Q K
2P P P P
3 P b B P
4 p N
5p q p n
6 p
7 p p
8 k
h g f e d c b a

Fischer Random Chess

White:
Black:



Orientation:
Scale:

Render as:
Shape:

Piece Set:

Colors:


a Fischer Random Chess problem from this position.

Rules of Fischer Random Chess

K
King
Q
Queen
R
Rook
B
Bishop
N
Knight
P
Pawn

Fischer Random Chess is played just like Chess except as follows:

Notation

You should be aware that Game Courier's notation is not identical with standard Chess notation. Game Courier has been designed for general use with any of several different Chess variants, and it accordingly uses a generic system of notation. This system is described in detail in the User's Guide. Here are the basics you need to know for Chess. Move a piece by writing its present coordinate, a hyphen, and its destination coordinate. For example, "e2-e4". There is no special operator for captures. A hyphen should be used even when a piece is captured. To signal to your opponent what piece you moved, and to provide an extra bit of error checking on the move you enter, you may include Game Courier's notation for the piece before the move. For example, "P e2-e4". Note that Game Courier uses uppercase letters for White pieces and lowercase for Black pieces. Black could enter "p e7-e5" for a move but not "P e7-e5".

This preset enforces the rules. It also automates en passant and castling. To capture by en passant, just move your Pawn to its destination. If it is a legal en passant move, your opponent's Pawn will be automatically captured.

To castle, move either your King or your Rook, but not both, to where it must go to castle. This move should be an otherwise illegal move. Either the King should move two or more spaces, or the King or Rook should hop over or capture the other. If you move your King only one space or move your Rook only across empty spaces, then your move will not count as castling. Once you have made half the castling move, the other piece will automatically move into place.

All promotions must be done explicitly. After moving your Pawn to the last rank, tack a semicolon to your Pawn move and add the new piece to the Pawn's space. For example, "P f7-f8; Q-f8".

How to Move Pieces

Full Algebraic Notation

Algebraic notation identifies each space by a coordinate that begins with its file label and ends with its rank label. On the Chess board, files go up and down from one player to the other, and ranks go from left to right. In most games, files are represented by letters, and ranks are represented by numbers, but there is no fixed rule requiring this for all games, and some games, such as Shogi, reverse this convention. If you look at the diagram, you will usually see the file labels going from left to right and the file labels going up and down. And if you hover your mouse over a space, you will normally see the name of the coordinate appear in a tooltip.

It is not uncommon to see algebraic notation being used for Chess, but it is often in an abbreviated format that requires you to know both the rules of the game and the current position to know exactly which piece moves where. For example, the notation "Ne6" indicates that a Knight is moving to e6, but it doesn't indicate which Knight, and it doesn't specify where the Knight is coming from. To figure this out, you need to know how a Knight moves and which Knight on the board can make a legal move to e6.

Although rules may be programmed for individual games, Game Courier itself does not know the rules of any game, and it is unable to parse abbreviated algebraic notation. Therefore, it relies on full algebraic notation, which completely specifies the move without requiring any knowledge of the game's rules or the current position. The most usual type of full algebraic notation indicates the piece that is moving by its label, the space it is moving from, and the space it moving to. In Chess, a typical first move might be written as "P e2-e4". When you hover your mouse over a piece, you will normally see the piece label followed by the coordinate for the space, and when you hover it over an empty space, you will normally see the coordinate label. Including the piece label in your notation allows Game Courier to check that the piece you're moving is the right one, and it makes game notation easier to follow, but it is not mandatory.

You may promote a piece by including a promotion move after your regular move. A promotion move has a piece go directly to a coordinate. Here is an example: "p e7-e8; q-e8".

You may remove a piece from a space by adding an @ to the space or by omitting the destination coordinate. For example, both "@-e4" and "e4-" would remove the piece on "e4". This is useful for en passant when you are playing a game that does not handle this automatically. For example, "P d5-e6; e5-" removes the Pawn on e5 after a Pawn moves from d5 to e6.

You will not need to remove spaces for most games, but if you should need to, you can do this by omitting the first coordinate in a move. For example, "-e4" would remove e4 from the board. To add or return a space to the board, you may add an @ or any other piece to it.

Available Pieces

Pieces are represented by labels, usually using uppercase letters for White and lowercase letter for Black. When you enter a move or specify the starting position for a game, you should remember that piece labels are case-sensitive. Many piece sets are available for use with Game Courier, and this table shows you which pieces belong to the piece set you are currently using.

The inclusion of a piece does not indicate that it is used in the game you are playing. But if your game uses pieces not included here, you should choose a different piece set.

WKnightBishop.gif
A
WBishop.gif
B
WCamel.gif
C
WWarmachine.gif
D
WElephant.gif
E
WFers.gif
F
WGrasshopper.gif
G
WHorse.gif
H
WNightrider.gif
I
WGiraffe.gif
J
WKing.gif
K
WLion.gif
L
WKnightRook.gif
M
WKnight.gif
N
WKingRook.gif
O
WPawn.gif
P
WQueen.gif
Q
WRook.gif
R
WBerlinPawn.gif
S
WAmazon.gif
T
WNightPrincess.gif
U
WVao.gif
V
WWazir.gif
W
WKnightKing.gif
X
WKingBishop.gif
Y
WZebra.gif
Z
BKnightBishop.gif
a
BBishop.gif
b
BCamel.gif
c
BWarmachine.gif
d
BElephant.gif
e
BFers.gif
f
BGrasshopper.gif
g
BHorse.gif
h
BNightrider.gif
i
BGiraffe.gif
j
BKing.gif
k
BLion.gif
l
BKnightRook.gif
m
BKnight.gif
n
BKingRook.gif
o
BPawn.gif
p
BQueen.gif
q
BRook.gif
r
BBerlinPawn.gif
s
BAmazon.gif
t
BNightPrincess.gif
u
BVao.gif
v
BWazir.gif
w
BKnightKing.gif
x
BKingBishop.gif
y
BZebra.gif
z

Credits

This preset uses the Abstract settings file for Fischer Random Chess, which was made by Fergus Duniho.

Game Courier was created, programmed and written by Fergus Duniho.

Game Courier, Copyright © Fergus Duniho, 2001-2017


WWW Page Created: 15 August 2001

Kibbitzing Etiquette

Kibbitzing is the practice of commenting on a game you are not playing. In commenting on a game, please follow these rules of etiquette.

(1) If you notice that someone has made an illegal move, please mention it. Some Game Courier presets cannot enforce rules, but Game Courier does enable players to take back any previous move. Details on how to take back a move are provided in the User's Guide, linked to above the board.

(2) Unless otherwise specifically asked to, do not offer hints or suggestions to players on what moves they should make. In general, avoid coaching comments.

(3) Once a game is over, it should be alright to offer your analysis of the game and your specific comments on what moves players should have made. If some players don't want this, they may mention it in the Kibbitzing section, and you should honor this request by not commenting on the game.

(4) Be polite. At the appropriate time, offer any criticism you have in a constructive manner. Avoid heckling players for bad moves.

(5) Don't spam this space with irrelevant comments. If you have a comment about Game Courier, rather than about the specific game you're viewing, please post it on Game Courier's Index page to give it.